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Various Methods to solve many-body problem: Coupled Cluster, NCSM, In-

medium SRG – we use many-body perturbation theory (MBPT)

Solve the many-body Schrödinger equation for nuclear systems:

where                          and

- Impossible to solve in heavy systems in complete Hilbert space 

-Consider problem in truncated (model) space defined by operators P for 

model space and Q for excluded space, where

and Veff acts in the model space given by P

Can obtain “eigenvalue-dependent” Heff (different Hamiltonian for different 

eigenstates):

Folded-diagrams: method to construct eigenvalue-independent effective 

interaction.

Many-body Problem for Finite Nuclei
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To construct the effective interaction, introduce:

-box: sum of all possible topologically distinct diagrams which are:

- Irreducible: the intermediate many-particle states between each pair of 

vertices belong to the Q space.

- Valence linked: all the interaction vertices are linked (via fermion lines) to 

at least one valence space line.

Many-Body Perturbation Theory
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1-body Q-box to 2nd order 2-body Q-box to 2nd order



Effective interaction given by infinite series of “folded” diagrams:

Effective Interaction

∫ = generalized folding operator – removes divergences due to 

degenerate model space

Several ways to solve the infinite series

Assuming degenerate model space,                     , can obtain Veff from 

Lee-Suzuki iterative scheme:

Need to determine 1- and 2-body Q-box and its derivatives
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Details of Calculation

Intermediate states excitations: 6 major shells above model space

Neglect 3-body and higher Q-box

Assume degenerate model space

LS iterative scheme: converged ~10 iterations

2nd-order in Perturbation Theory

From

From: M. Kartamyshev
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Angular average of interaction

sd-shell: USD (1984), USDa, USDb (2006)
- global fit of SPE and TBME; monopoles most important

Monopole Part of Interaction

Microscopic MBPT typically works for few particles/holes away from 
closed shell: deteriorates beyond this

- Deficiencies in microscopic interactions can be improved by adjusting 
monopole two body matrix elements: 

Determines interaction of orbit a

with b

pf-shell:
- GXPF1 (2004): quasi-global fit; monopoles most important
- KB3G(2001): modification of monopole part only

Phenomenological shell model interactions typically start from MBPT results 
then exploit importance of monopoles:

Monopole Hamiltonian determines evolution of SPEs

- important for determining shell closures



Compare monopoles from: 

 Microscopic G-matrix,
Kuo-Brown interactions

 Phenomenological GXPF1,
KB3G interactions.

Phenomenological monopole shifts

Otsuka; Trento ‘07

Phenomenological vs. Microscopic

Clear shifts for low-lying orbitals:

- T=1 repulsive shift

- T=0 attractive shift 
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interactions: T=0 attractive

Clear shifts for low-lying orbitals:
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Compare monopoles from: 

 Microscopic G-matrix,
Kuo-Brown interactions
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KB3G interactions.

Phenomenological vs. Microscopic

Similar for sd-shell: USDa,USDb

interactions: T=1 repulsive

Clear shifts for low-lying orbitals:

- T=1 repulsive shift

- T=0 attractive shift 



Compare monopoles from: 

 Microscopic G-matrix,
Kuo-Brown interactions

 Phenomenological GXPF1,
KB3G interactions.

Can 3N forces explain these shifts? -- Zuker (2003)

Phenomenological vs. Microscopic

In Progress: Validate against No-Core Shell Model with a core

with: B. Barrett, A. Lisetskiy, and A. Schwenk

Similar for sd-shell: USDa,USDb

interactions: T=1 repulsive

MBPT converged?  Investigating 3rd order diagrams in Q-box 

Clear shifts for low-lying orbitals:

- T=1 repulsive shift

- T=0 attractive shift 

Cause of the shifts?



Nuclear Interactions

Chiral interactions provide systematic, consistent 3N

AV18

N3LO

“Bare”
N3LO

Lower cutoffs: improve convergence for structure in light nuclei, 

perturbative in nuclear matter – off-diagonal couplings removed 

(remain for G-matrix)

Bogner et al. (2007)

G-matrix

Chiral 2N: large cutoffs not suitable for MBPT – need to renormalize 
Evolve to lower cutoff using RG methods (smooth regulator)



Approach: inspired by Coupled Cluster results for 4He

Sum over occupied states (as in 

coupled cluster, nuclear matter):

cbaVabcbaVab N
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0- 1- and 2-body parts of 3NF 

dominate – neglect residual 3NF

3N forces tractable in shell model

Vlow k(Λ) + leading order chiral V3N(Λ) D(Λ), E(Λ) couplings fit to 3H BE, 
4He radius for given Λ

Hagen, Papenbrock et al.

PRC (2007).

3N Forces in Valence-Shell Interactions

Benchmarked using low-momentum

Interactions and 3NF



Use cutoff dependence of Vlow k (Λ) to probe effects of 3N force:

T=0: large cutoff dependence

Expect attraction from 2nd

order NN-3N

T=1: cutoff-independent  

monopoles

Indicates c terms may 

dominate (repulsive 

contribution in nuclear matter)

Not enough to calculate effects to first order only for T=0

Cutoff Dependence of Monopoles



Use cutoff dependence of Vlow k (Λ) to probe effects of 3N force:

T=0: large cutoff dependence

Expect attraction from 2nd

order NN-3N

T=1: cutoff-independent  

monopoles

Indicates c terms may 

dominate (repulsive 

contribution in nuclear matter)

Cutoff Dependence of Monopoles

Similar trends in sd-shell



Use cutoff dependence of Vlow k (Λ) to probe effects of 3N force:

T=0: large cutoff dependence

Expect attraction from 2nd

order NN-3N

T=1: cutoff-independent  

monopoles

Indicates c terms may 

dominate (repulsive 

contribution in nuclear matter)

Similar trends in sd-shell

Wrong hierarchy for low-lying T=1 monopoles with microscopic theory

Cutoff Dependence of Monopoles



Calculation Scenarios

Monopoles derived from 3N Forces

Focus on T=1 monopoles and systems in the following scenarios:

NN matrix elements derived from:

- Chiral N3LO (500MeV) using smooth-regulator Vlow k with range 

of cutoffs 

- 2nd order in MBPT: details as previously given

A) One-Delta excitation from   

N2LO:

B) Full Chiral N2LO
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Converged in 3NF partial 

waves up to:
2

7
J

3N calculated to first order 

in MBPT

3N (one-Δ)

3N (full N2LO) 

Dominant effect from  

one-Δ – as expected

from cutoff variation 

Improved treatment of d3/2 – treat as holes in 40Ca core

T=1 Monopoles in sd-shell

Restores monopole hierarchy d5/2-d5/2 vs. d5/2-d3/2

3N forces produce clear repulsive shift in monopoles



Oxygen-Flourine Anomaly

F dripline

Experimental Oxygen dripline observed at 24O

Monopole changes multiplied by neutron number – small changes will 

impact neutron-rich regions 

25-28O predicted to be bound with NN-only

Regular trend for dripline of 

sd-shell nuclei

Oxygen dripline observed to

deviate from this trend

Use 3N forces to investigate this anomaly – probe limits of nuclear existence 

with microscopic theory

Why does 1 proton change so much?



Evolution of SPEs in sd-shell

d3/2 orbit bound for microscopic

NN-only interactions (G-matrix 

and Vlow k)

NN predicts bound Oxygen 

isotopes to 28O

Additional repulsion in d3/2

monopole strengths from 3N 

multiplied by neutron number

Largest effect seen in neutron 

rich isotopes

d3/2 becomes unbound orbit with

addition of 3N forces

First results with 3N forces

Similar behavior for single Δ and 

chiral N2LO forces



Calculated Oxygen Binding Energies

First shell-model calculations using  NN+3N monopoles: predict dripline in O

Calculate GS energies (relative to 16O) with SDPF-M single particle energies 

using MBPT to 2nd order, 6 major shell intermediate state excitations

Adding 3NF: isotopes beyond 24O less bound: dripline correctly predicted at 
24O! 

Phenomenological interactions show 25-28O less bound than 24O

BEs increase for NN-only through 28O



converged with 3NF 

partial waves up to:

T=0: Expect attraction from 2nd order perturbation theory: in progress 

Clear repulsive shift 

due to 3NF in T=1 

channel

2

7
J

Calculated to first order 

in many-body perturbation 

theory

3N (one Δ)

3N (N2LO)

Similar picture as in sd-shell

Monopoles in pf-shell



Calcium Effective Single Particle Energies

Large f7/2-p3/2 gap in phenomenological interactions gives shell closure at 
48Ca – famously missing with NN-only

Increase in gap due to 3NF monopoles: indicates enhancement of closed-

shell features at 48Ca 

Using KB3G SPEs, MBPT with 3 major shells (preliminary)

Calculate SPEs with 3N force monopoles



Calcium Effective Single Particle Energies

Using GXPF1 SPEs, MBPT with 3 major shells (preliminary)

Calculate SPEs with 3N force monopoles

N=34 shell gap: GXPF1 shows closed shell at N=34 – in disagreement 

with KB3G

Vlow k also gives gap at N=34, retained after adding 3N – supports 

GXPF1



With 3N monopoles – close to GXPF1 BEs

Expect slightly more binding for higher intermediate states

NN-only comes to overbind Ca isotopes beyond ~46Ca 

3N monopoles correct overbinding – good experimental agrement

Ground State Energies in Ca Isotopes

Perform shell model calculations for Ca isotopes using NN + 3N monopoles

Calculate Binding Energies for isotope chain (preliminary)



• Exploring frontiers of nuclear structure of medium mass nuclei with 3N 
forces
•

• 3NF contribution to sd- and pf-shell monopoles 
• Repulsive shift seen in T=1 monopoles

• In progress: T=0 – need 3N effects to 2nd order

• Correctly predicted binding energies of oxygen isotopes – including dripline

• First calculations in pf-shell with calcium binding energies

• Investigate effects of 3NF on SM interactions  as orbits are filled.

Thanks to Collaborators!

A. Schwenk

T. Otsuka

T. Suzuki

Outlook


